The effect of projections on fractal sets and measures in Banach spaces
نویسندگان
چکیده
We study the extent to which the Hausdorff dimension of a compact subset of an infinite-dimensional Banach space is affected by a typical mapping into a finite-dimensional space. It is possible that the dimension drops under all such mappings, but the amount by which it typically drops is controlled by the ‘thickness exponent’ of the set, which was defined in [13]. More precisely, let X be a compact subset of a Banach space B with thickness exponent τ and Hausdorff dimension d. LetM be any subspace of the (locally) Lipschitz functions from B to Rm that contains the space of bounded linear functions. We prove that for almost every (in the sense of prevalence) function f ∈M , the Hausdorff dimension of f(X) is at least min{m, d/(1+τ)}. We also prove an analogous result for a certain part of the dimension spectra of Borel probability measures supported on X. The factor 1/(1 + τ) can be improved to 1/(1 + τ/2) if B is a Hilbert space. Since dimension cannot increase under a (locally) Lipschitz function, these theorems become dimension preservation results when τ = 0. We conjecture that many of the attractors associated with the evolution equations of mathematical physics have thickness exponent zero. We also discuss the sharpness of our results in the case τ > 0.
منابع مشابه
Functionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملSome results on functionally convex sets in real Banach spaces
We use of two notions functionally convex (briefly, F--convex) and functionally closed (briefly, F--closed) in functional analysis and obtain more results. We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$, then $bigcup_{alphain I}A_{alpha}$ is F--convex. Moreover, we introduce new definition o...
متن کاملOn Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملContractive gauge functions in strongly orthogonal metric spaces
Existence of fixed point in orthogonal metric spaces has been initiated recently by Eshaghi and et al. [On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory, in press]. In this paper, we introduce the notion of the strongly orthogonal sets and prove a genuine generalization of Banach' fixed point theorem and Walter's theorem. Also, we give an example showing that our main theor...
متن کاملConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005